Building a Frontend Pipeline

Nathawntel T. Schutta
@wntschutta

Ah JavaScript!

It used to be so simple right?

1,500 line mainjs.

Our apps aren’t like that
anymore though are they?

JavaScript is a first class citizen now.

Modern applications are many
thousands of lines of JavaScript.

We incorporate many
libraries and frameworks.

Joe Armstrong b
@joeerl
Dear <redacted>

Thank you for the latest version of your wonderful program with
many new features.

Breaking my old code that worked in your previous version is a
great idea and will provide me with many hours of fun searching
for a work around.

Tearing out my hair
@joeerl

6:28 AM - Nov 15, 2017

73 Retweets 221 Likes

https://mobile.twitter.com/joeerl/status/930774515512201216

NPM all the things.

JavaScript itself is evolving.

Browsers are still an issue...

The struggle is real.

What do we do about it?

Why do we need a pipeline at all?

Not your older sister’s web apps.

No longer a few thousands
lines of JavaScript and jQuery.

Adhoc approach can’t keep up with
the complexity of modern JS apps.

Apply the level of discipline to the
frontend that we use on the backend.

Linters to ensure our code doesn’t
fall prey to common errors.

Unit tests to ensure our changes
didn’t break anything.

Bundlers to minimize asynchronous
requests to our servers.

Transpilers so we can leverage
ES6 in older browsers.

Task runers to help tie it all together.

JavaScript usage has exploded.

Number one lanqguage on GitHub?

o0 ® M Ol ®ll= & octoverse.github.com

The fifteen most popular
S languages on GitHub
by opened pull request

GitHub is home to open source projects written in 337 unique
programming languages—but especially JavaScript.

JAVASCRIPT
PYTHON —— M
JAVA e 985K
RUBY) B70K
o
PHP -~ & S5&5K
02
C++ et 413K
03
CSS ——g 335K
04
C# —g 326K
60 —@ 2B5K
C —g 239K
TYPESCRIPT —e 207K
SHELL —g 206K
SWIFT —e 107K
SCALA —e 399K

OBJECTIVE-C -o 66K

2.3M

GitHub

Yep.

Not a new phenomena either.

We cannot afford to treat
JavaScript as a one off.

The same engineering discipline we
use on “server side” code must apply.

Of course for many of us, 3&\/&5&1‘&?%
*is™ our server side lanquage too!

More than a few options.

Try and clear some of that up today.

Linters.

Certain mistakes can be
caught automatically.

Static code analysis.

Find bad patterns.

Check style adherence.

Essentially looking for
programer errors.

== instead of ===

That kind of thing.

Can (and should) wire linters into
your IDE or text editor of choice.

Better to catch the errors as you go
than wait for a build break.

As usual, multiple options.

o ® @ eslint.org (@] © 3 th 3 (.

@ ESLint Q Search the docs...

Userguide~ Developerguide~ Blog Demo~ About

ESLint

The pluggable linting utility for JavaScript and JSX

Get Started »

Welcome

ESLint is an open source project originally created by Nicholas C. Zakas in June 2013. Its goal is to provide a

pluggable linting utility for JavaScript.

Latest News

e ESLintv4.10.0 released 27 October 2017

About

Learn more about ESLint and why it came about and the general philosophy
behind it.

Learn More »

Command Line Interface

ESLint is written to be used primarily on the command line. Learn about its
usage here.

CLI Details »

Rules

ESLint comes with a bunch of default rules to get you started. This is the
complete list.

See List»

Developer Guide

Love ESLint and want to help make it even awesomer? We've got all the details
to get you started.

Start Hacking »

Pluggable linter.

Many, many rules you can tweak...

eslint.org (@]

@) ESLint

v

Y % % ™ “

e

no-class-assign
no-confusing-arrow
no-const-assign
no-dupe-class-members
no-duplicate-imports
no-new-symbol
no-restricted-imports
no-this-before-super
no-useless-computed-key
no-useless-constructor
no-useless-rename
no-var

object-shorthand
prefer-arrow-callback
prefer-const
prefer-destructuring

prefer-numeric-literals

prefer-rest-params
prefer-spread
prefertemplate
require-yield
rest-spread-spacing

sort-imports

Q Searchthedocs...

Userguide~ Developerguide~ Blog Demo~ About

disallow reassigning class members

disallow arrow functions where they could be confused with comparisons
disallow reassigning const variables

disallow duplicate class members

disallow duplicate module imports

disallow new operators with the Symbol object

disallow specified modules when loaded by import

disallow this / super before calling super() in constructors

disallow unnecessary computed property keys in object literals

disallow unnecessary constructors

disallow renaming import, export, and destructured assignments to the same name
require let or const instead of var

require or disallow method and property shorthand syntax for object literals
require using arrow functions for callbacks

require const declarations for variables that are never reassigned after declared
require destructuring from arrays and/or objects

disallow parseInt() and Number.parseInt() infavor of binary, octal, and hexadecimal
literals

require rest parameters instead of arguments

require spread operators instead of .apply()

require template literals instead of string concatenation

require generator functions to contain yield

enforce spacing between rest and spread operators and their expressions

enforce sorted import declarations within modules

Configuration is, wait for it, JSON. But
you can also use JavaScript or YAML.

eslint --init gives
you a .eslintrc file.

You get to decide the error level.

Off, warn or error.

The recommended rules are on by
default - any rule in the list with a V.

L)) B & esintorg ¢

@ESLint Q Search the docs... Userguide~ Developerguide~ Blog Demo~ About

Rules

Rules in ESLint are grouped by category to help you understand their purpose.

No rules are enabled by default. The "extends": "eslint:recommended" property ina configuration file enables rules that report common problems, which
have a check mark « below.

The —-fix option on the command line automatically fixes problems (currently mostly whitespace) reported by rules which have a wrench / below.

Possible Errors

These rules relate to possible syntax or logic errors in JavaScript code:

for-direction enforce “for” loop update clause moving the counter in the right direction.
getter-return enforce return statements in getters
no-await-in-loop disallow await inside of loops
v no-compare-neg-zero disallow comparing against -0
v no-cond-assign disallow assignment operators in conditional expressions
v no-console disallow the use of console
v no-constant-condition disallow constant expressions in conditions
v no-control-regex disallow control characters in regular expressions
¢ / no-debugger disallow the use of debugger
v no-dupe-args disallow duplicate arguments in function definitions
v no-dupe-keys disallow duplicate keys in object literals
v no-duplicate-case disallow duplicate case labels
v no-empty disallow empty block statements
v no-empty-character-class disallow empty character classes in regular expressions
v no-ex-assign disallow reassigning exceptionsin catch clauses
¢ / no-extra-boolean-cast disallow unnecessary boolean casts

You can specify
environments and globals.

Various parser options.

Expects ES5 syntax but you can
configure other variants.

Also supports JSX syntax.

Using React? Leverage

ESLint-plugin-React.

https://github.com/vannickcr/eslint-plugin-react

Espree is the default parser but you
can swap that out if you wish.

ESLint supports 3rd
party plugins as well.

You can ask ESLint to
ignore a chunk of code.

/* eslint-disable *x/
/* eslint-enable *x/

Be very careful with that...

You can also disable a specific rule inline.

/* eslint-disable no-alertx/
/* eslint-enable no-alertx/

You could actually turn
on *all* the rules.

"extends": "eslint:all”

Please don’t do that!

The rules change with every
minor and major version.

Works with Atom, Emacs,
Sublime Text, TextMate, VIM, etc.

JetBrains, Eclipse, Visual
Studio and more.

Pre commit hooks, command line tools,
Mocha integration...

Rules for Anqular, Jasmine, React...

Stock configurations for Airbnb,
Facebook, Google, Shopify, etc.

And you get an integration,
and you get an integration!!!

Curated list - Awmesomwe ESLink.

https://github.com/dustinspecker/awesome-eslint

Installed via NPM.

MIT license.

Don’t like ESLint?

function main() {
'Hello, World

return

and

jshint.com

Use a linter! Catches common
mistakes and errors.

Which one should you use? Up to you!

Feels like there is more
energy behind ESLint.

More options than you probably
know what to do with too!

Spend some time thinking about
the configuration options.

There are a lot of options.

Which ones should you turn on?
Which ones should you relax?

é -+ Kent Beck @
\\; @KentBeck

any decent answer to an interesting question
begins, "it depends..."

10:45 AM - 6 May 2015

540 Retweets 380Lkes PO B I E P E S 3

O 18 1) 540) 380

Follow ||| 4

https://twitter.com/KentBeck/status/506007846887628801

Is this an existing project?

Or greenfield?

Tempting to crank all the knobs up to 11.

o/

A3V - MWHE

UKLANJANJE OVOG ZNAKA
KRIVIENO JE DIELO

YKJIAIBAILE OBOT JHAKA
KPHBHYHO JE AJENO

Existing projects probably
have some cruft.

Don’t overwhelm the
team with warnings!

Easy to get discouraged.

"We have so many warnings...”

Fixing 10 or 20 hardly makes a dent.

Easy to miss when you
add another one...

Start small.

Expect some...discussion
around which rules to use.

Pick one or two.

Turn them on.

Should result in a
manageable set of warnings.

Fix them!

An iteration or two later,
add another rule or two.

Rinse, repeat.

"Ratchet up.”

Over time, you'll have a
very complete set.

And a clean code base.

With a new code base, it
is easier to start big.

Start clean, stay clean.

Don’t be afraid to tweak!

The warnings are there
to help, not hurt.

Testing.

We need to test our code.

That isn’t controversial.

Right?!?

We can have a debate about unit vs.
Integration tests vs. Ul tests.

We need it all...up to you to
determine how much of each.

Think about it like a pyramid...

{

88 < > m| i O i @ || mountaingoatsoftware.com Gi_ = il ™ i o 1.

2 g‘c?yygﬁlyﬁGOAT P LearnAboutAgile ~ AboutUs ~ Blog More v

An effective test
automation
strategy calls for
automating tests at
three different
levels: unit, service

and Ul.

mountaingeatsoftware.com

The Forgotten Layer of the Test Automation Pyramid

by Mike Cohn ® 46 Comments

Even before the ascendancy of agile methodologies like Scrum, we knew we should automate our
tests. But we didn’t. Automated tests were considered expensive to write and were often written
months, or in some cases years, after a feature had been programmed. One reason teams found it
difficult to write tests sooner was because they were automating at the wrong level. An effective test
automation strategy calls for automating tests at three different levels, as shown in the figure below,
which depicts the test automation pyramid.

fo
[serice\

As you might suspect, there are
multiple testing tools at our disposal.

& mochajs.org

Mocha is a feature-rich JavaScript test framework running on Node.js and in the browser, making asynchronous testing simple and fun
and accurate reporting, while mapping uncaught exceptions to the correct test cases. Hosted on GitHub.

BACKERS

Find Mocha helpful? Become a backer and support Mocha with a monthly donation.

Z
i W)\ [9O%) s W \
{ A A { {) |)
\ /A g A% A

SPONSORS

. Mocha tests run serially, allowing for flexible

Use Mocha at Work? Ask your manager or marketing team if they’d help support our project. Your company’s logo will also be displayed on npmjs.com and our GitHub repository.

.- ¥ _

- e e o B

- I S ——

| |*|

=

Another very popular
JavaScript testing tool.

Perhaps "meta” tool.

Can use different assert libraries.

Allows for BDD or
“assert” based testing.

Includes code coverage.

Highlights slow tests.

Detects globals.

Can run tests based on a
reqular expression...

Various reporting mechanisms.

Dot matrix, spec, TAP,
landing strip, list, JSON...

Also includes JSON and
HTML coverage reports.

Interface system supports
various testing DSLs.

should, expect, chai...
whatever you prefer using.

Often used with Chai.

o0 e

Sl

707 7@ chaijs.com (@)

@ Chai Assertion Library Guide API| Plugins

Chaiisa BDD /TDD assertion library for node and
the browser that can be delightfully paired with any
javascript testing framework.

Getting Started

Learn how to install and use Chai through a series of
guided walkthroughs.

Download Chai 41.2/2017-08-31

fO’l node Another platform? Browser Rails

API Documentation

Explore the BDD & TDD language specifications for all
available assertions.

The chai package is available on npm.

$ npm install chai View Node Guide

Issues | Fork on GitHub | Releases | Google Group | Build Status

Plugin Directory

Extend Chai's with additional assertions and vendor
integration.

O & B

Chai has several interfaces that allow the developer to choose the most comfortable. The chain-capable BDD

styles provide an expressive language & readable style, while the TDD assert style provides a more classical feel.

Should Expect (ssert

chati.should(); var expect = chai.expect; var assert = chai.assert;

foo.should.be.a('string’); expect(foo).to.be.a('string'); assert. typeOf(foo, 'string');

foo.should.equal('bar’); expect(foo).to.equal('bar’); assert.equal(foo, ‘'bar');

foo.should.have.lengthOf(3); expect(foo).to.have.length0Of(3); assert.lengthOf(foo, 3)

tea.should.have.property('flavors®) expect(tea).to.have.property(' flavors') assert.property(tea, 'flavors');
.with.lengthOf(3); .with.lengthOf(3); assert.lengthOf(tea. flavors, 3);

Visit Should Guide © Visit Expect Guide © Visit Assert Guide ©

Plugins extend Chai's assertions to new contexts such as vendor integration & object construction. Developers

ran hiiild their mam nliicine tn chare with caommiinitv ar niee the nliicin nattarn ta NRY 11n evictino tecte

Just an assertion library.

Allows you to use BDD or TDD.

Supports asynchronous
testing out of the box.

Can set test and suite level timeouts.

Mocha looks for /test/*Js.

Works with sinon.js for
spies, stubs and mocks.

Headless testing via PhantomJs.

Basically, everything you expect out
of a modern testing library!

Don’t like Mocha?

0@ (< (im| (o BANO) @ jasmine.github.io & * i} a || s

Jasmine

Behavior-Driven JavaScript

Jasmine GET STARTED DOCS SUPPORT RELEASES GITHUB
FAST BATTERIES INCLUDED NODE AND BROWSER
Low overhead, no external Comes out of the box with Run your browser tests and
dependencies. everything you need to test your Node.js tests with the same
code. framework.

Sample Code

Jasmine is a behavior-driven development
framework for testing JavaScript code. It does
not depend on any other JavaScript
frameworks. It does not require a DOM. And it
has a clean, obvious syntax so that you can
easily write tests.

GET STARTED

Jasmine OPEN SOURCE Pwiﬁ L LABS

Writing tests is more important than
the tool you use to write them.

Doesn’t matter which one you use!

But use something!

Bundlers.

At build time, generates a bundle file.

One unified JavaScript file.

Your code, libraries, frameworks, all
the dependencies - one file.

Saves the browser from downloading
dozens (or hundreds) of files.

Why do we use bundlers?

First, a bit of history.

Common for developers to
leverage modules.

Or packages, namespaces, etc.

Nothing new really - just a pattern.

In some languages, modules
are a first class concept.

In others it is very fuzzy.
Or lacking all together.

Just a way to encapsulate code.

Allows us to abstract functionality to
a library or framework.

Simplifies reuse.

ESs and earlier has no
allowance for modules.

And that was fine - for a while.

But applications have grown.

Two common patterns in older
JavaScript code...

Immediately Invoked Function
Expression aka IIFE.

Wrap a function in parenthesis makes
it a function expression...

Which we can then immediately call.

(function(){

console. log('test');

}) ()

Code is encapsulated.

Variables inside the function stay
within the function’s closure.

Doesn’t help us with dependency
management though.

IIFE wasn’t the only approach. Some
used the Revealing Module pattern.

Basically we assign a return value.

And we use that variable to
access the "module’s API”

var myModule = function(){
function logTest() {
console. log('test');

}

return {
logTest: logTest
s
+()

Basically gives us the same benefits
and drawbacks as IIFE.

Unsurprisingly, clever developers
yearned for more.

Started defining their own module
formats for JavaScript.

Asynchronous Module
Definition (AMD), CommonJs...

Universal Module Definition (UMD),
System.reqgister...

And of course ES6 has a module format!

Module loaders execute at runtime.

Module loader looks at the module
format and downloads required files.

Which often results in downloading
dozens (or hundreds) of files.

"l only required calendar but
%7 files were downloaded..”

RequirelS and SystemJS are popular.

Module bundler replaces
a module loader.

Generates a bundle of code at build
time. Browser fetches said bundle.

As you can quess, there are multiple
bundler options to choose from!

| i i i
e} il @ i & webpack.github.io GIA | o = Ao i [m] t.

webpack

MODULE BUNDLER

webpack 1.x

| Getting started by reading the documentation, which also contains an introduction and a tutorial. I

webpack 2.x

| Getting started by reading the documentation, which also contains an introduction and a tutorial. l

-

Module bundler - but
then you knew that.

Builds a dependency graph and pulls
everything into one (or more) bundle.

Highly configurable.

Four core concepts: Entry,
Output, Loaders and Plugins.

Entry - where to start the
dependency graph.

Based on said entry point, what other
modules do we depend on.

There can be multiple entry points.

Output - where do you want the
bundle and what do you want to call it.

Also referred to as emitted,
produced or discharged.

Loaders - extend webpack beyond
JavaScript to other file types.

Essentially turns any file into a
module that can be included.

A file that passes this bkest should
be transformed with this Lloader.

Plugins - extensions to webpack.

Minify, optimize, define variables, etc.

Simply require the plugin, configure
as necessary and away you go.

Multiple plugins built in, along with
several others you can leverage.

https://webpack.is.org/plugins/

webpack does perform
a bit of transpiling.

Gives us mear& and QXF'CWE support.

Again, bundling breaks the
edit/save/refresh lifecycle.

As you might expect, there are
options in the webpack universe!

We can use source maps to, well map
errors and warnings to the original file.

webpack includes a watch mode:
change a file, rebuild.

Just requires a browser refresh.

Violates the lazy developer ethos...

That which | do more than once
should be automated away!

webpack-dev-server
gives us live reloading!

Make a change and once it is done
building, it will be loaded!

webpack supports Hot Module
Replacement (HMR) as well.

Check out the development quide for
full setup information.

https://webpack.is.org/quides/development/

Installed via NPM or yarn.

MIT license.

Of course webpack is
not our only option!

No one could have predicted this.

® ® (Em| (o] ® browserify.org (@] (4] * th o i

Browserify lets you require() in the browser by
bundling up all of your dependencies.

INSTALL DOCUMENTATION HELP + ARTICLES SWEET DEMOS

Install

USE BROWSERIFY FROM THE COMMAND LINE

First install node, which ships with npm. Then do:

Transpilers.

That term “transpile” has come up a
few times - what does it mean?

Not a great word frankly...

And not a new idea as such.

Just a fancy way of saying
"source-to-source” compiling.

Prevalent in the frontend space.
For better or worse.

We can blame GWT and CoffeeScript.

Take Java and make it JavaScript.

Make my ES6 code run
in older browsers.

TypeScript, ClojureScript.
The list goes on and on!

Anything you can do | can do better...

Allows us to use modern approaches
without worrying about browsers.

Remember how much fun the
Netscape/lE wars were?!?

Too soon?

Have things gotten any better?

e®e <|>|l O 0 @ = & kangax.github.io (] O =il d | e

@ W ECMASCript 5“2016+ next | intl | non-standard | compatibility table

Bv8 WispiderMonkey [JavaScriptCore M Chakra M Carakan KIS Other

Sort by | Enginetypes [Show obsolete platforms ~1 Show unstable platforms y s i . : !)
Minor difference (1 point) Small feature (2 points) Medium feature (4 points) Large feature (8 points)
Compilers/polyfills Desktop browsers Servers/runtimes Mobile
Current Babel + ;Z o we || K Edge Edge FF52 CHG1, CHG2, SF Node: | Diodes |Node | it bk |1 00 o8
Feature name S Traceur R Closure Sl s t! IE11 e 8 FF 56 e % SF11 PJS XS6 JXA >=6.5 >=8.7 >103
browser core-jsm - shim 4.14"! 15 16 ESR opr4gl'll opaol’l 10.1 415] 51 51 1.8 2.2 <11 1
core-js 2 =
Optimisation
Syntax
» default function parameters K3 : -

rest parameters K3
* soread (...) operator K3
1 object literal extensions K3
% for.of loops KA

. octal and binary literals

template literals K3

» RegExp "y" and "u" flags KA

» destructuring, declarations KA
destructuring, assignment KA
» destructuring, parameters KA
+ Unicode code point escapes

. new.target K3
Bindings

I e

block-level function declaration(5!
Functions

)

©

» arrow functions K3
class K3

)

super (3

© generators k3
Built-ins

¥ typed arrays K3
» Mapk3

set 3

Tomorrow’s Javascript today?

o0 ® < m 0O O® & babeljs.io] © * M | T (.

W& Learn ES2015 Docs ~ Tryitout Blog FAQ Team Q Donate Forum @ W

Babel is a JavaScript compiler.

Use next generation JavaScript, today.

Put in next-gen JavaScript Get browser-compatible JavaScript out

r [a,,

our REPL

Latest From Our Blog: Babel Turns Three

Ready to get started?

Install the Babel CLI and a preset Create a .babelrc file (or use your package.json)

npm install --save-dev babel-cli babel-preset-env {

Wouldn’t it be nice to use all the new
JavaScript hotness today?

Browser support isn’t, and probably
never will be, universal.

Babel gives us “syntax transformers’”.

But it also supports
polyfill, JSX and Flow.

Plugins allows you to piece together
the transforms your project needs.

But how do | debug the transformed
code? It isn't what | wrote!

Source maps for the win.

What does this look like?

Use the REPL!

https://babelis.io/repl/

o0 ® < m 0O O® & babeljs.io] © * M | T (.

W& Learn ES2015 Docs ~ [ROMTE Blog FAQ Team Q Donate Forum @ W

Settings "use strict"; I "use strict";
class CoffeeDrink { var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i <
props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable ||
constructor (size, name, shots) { false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true;
this.size = size; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor,
this.name = name; protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps);
Prosats this.shots = shots \I 25 if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }();
sets }
function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw
Env Preset < sayMyName () { new TypeError("Cannot call a class as a function"); } }
console.log(I have a drink for ${this.name}.")
} var CoffeeDrink = function () {
function CoffeeDrink(size, name, shots) {
} _classCallCheck(this, CoffeeDrink);
this.size = size;
{ this.name = name;
let name = "Tomorrow's JavaScript Today!"; this.shots = shots || 2;
} }

_createClass(CoffeeDrink, [{
key: "sayMyName",
value: function sayMyName() {
console.log("I have a drink for " + this.name + ".");

)i

return CoffeeDrink;

YO

var name = "Tomorrow's JavaScript Today!";

But you'll want to use the CLI.

Along with your favorite build tool.

You name it, it is most likely supported.

Configure via Jbabelre
file. Imagine that.

If you are doing React you are
(probably) using Babel.

And the babetmprese%mreac&.

Works with Atom, Sublime Text,
VIM, Visual Studio, WebStorm, etc.

Installed via NPM.

MIT license.

Other options are largely other
languages transforming to JavaScript.

Haste, ElIm, Amber, ClojureScript,
TypeScript, Opa, Dart, etc.

Task runners.

Obviously, you could manage these
tools by hand. But you shouldn't.

Automation: #winning.

Ensures that we're doing the same
thing. Every. Single. Time.

Run tests, minify, linting, bundle...

Not a new idea...

Akin to make, Rake, Ant, Gradle, etc.

Fertile ground. A veritable plethora
of options in the build space.

Many people just use npm scripts.

Several supported “stages” plus the
ability to run arbitrary scripts.

un foo
r
npm

YO

U can cover a lot of ground using

N

othing more than npm scripts.

And it is one less tool you have to
install, update, learn etc.

Bit more of an...artisanal approach.

Of course there are full fledged
task runner/build tools.

& gulpjs.com

&‘uép Docs Plugins Twitter Contribute

Automate and enhance your workflow

npm install gulp-cli
npm install gulp -D
touch gulpfile.js
gulp —help

gulp is a toolkit for automating painful or time-consuming tasks in your development

workflow, so you can stop messing around and build something.

GET STARTED

Came along well after Grunt.

Alternative approach to automation.

Code over configuration.

More Gradle like.

Large plugin ecosystem (though
ultimately smaller than Grunt’s).

"The streaming build system.”

Leverages Node streames.

Node streams can be...challenging
for developers to understand.

“Streams are Node’s best and
most misunderstood idea’”

https://medium.freecodecamp.org/node-js-streams-
evervthing-vou-need-to-know-co141206beg2

Just a collection of data - and it
may not all fit into memory.

But data is only part of the picture.

Think composing Unix
commands via pipes.

Streams let us do the same thing.

Many Node modules implement the
streaming interface: HTTP, TCP, zlib.

Gulp takes advantage of streams -
leads to faster, more efficient builds.

But the learning curve can be steep.

At least for those lacking a
solid Node background.

Documentation isn’t stellar.

MIT license.

Don't like any of those options?

No problem!

A

d you get a build tool an

d you get a

Uuild tool and you geta b

uild tool...

broccolijs.com

@
Js
Broccoli.js — The asset pipeline for ambitious applications.

$ npm install -g broccoli-cli

compileSass = require('broccoli-sass');
filterCoffeeScript = require('broccoli-coffee');
mergeTrees = require('broccoli-merge-trees');

sassDir = 'scss';
coffeeDir = 'coffeescript';

styles = compileSass([sassDir], 'app.scss', 'app.css');
scripts = filterCoffeeScript(coffeeDir);

module.exports = mergeTrees([styles, scripts]);

Blazing fast Less (code) is more

(o] @ = brunch.io p

(ﬂ) Brunch Home Docs Plugins Skeletons InProduction Community

Seeing your build tool in nightmares?
Try Brunch!

Brunch lets you focus on what matters most — solving real
problems instead of messing around with the glue.

Small configs Three simple commands Productivity and happiness

By being opinionated about your build pipeline, It doesn't take much to get around with brunch:
Brunch is able to provide a smooth and fast
experience, and makes your config files take a

NPM support
source maps out-of-the-box

.
X .
e brunch new to create a new project o fastfromizerobuilds
.
.

e brunch build to build

drastic cut.] i incremental builds
® brunch watch to live-compile i N
Yes, the configs are much simpler
TYPICAL GULP CONFIG = V5= TYPICAL BRUNCH CONFIG

sar sgp, base, caseat, éirectory, mls, qutil, Sostnam, satr, sefresh, sass, uglify, del, coumet, stoprefivar, babel;

exports.files = {
javascripts: {
joinTo: {

'vendor.js': /A(2!app)/,
'app.js': /*app/

There are others though more than a
few appear abandoned...

Anyone publish one today?

Putting it all together.

We've touched on a number of tools!

Leads to a very natural question...

Which one should *I* use?

é -+ Kent Beck @
\\; @KentBeck

any decent answer to an interesting question
begins, "it depends..."

10:45 AM - 6 May 2015

540 Retweets 380Lkes PO B I E P E S 3

O 18 1) 540) 380

Follow ||| 4

https://twitter.com/KentBeck/status/506007846887628801

Don’t like what I've shown you?

Great, use what works for your team!

Not sure what that is?

Perform a time boxed eval.

But use something!

Many of these tools are very new.

Expect some volatility.

Can’t treat JavaScript like
a toy language today.

You don’t need to adopt
every one of these today.

Pick your pain point.

Introduce one or two tools.

Ratchet up.

After a few weeks or
months, add another.

Rinse repeat.

Take the time to wire these into
your editor or IDE of choice.

Make the right thing to do,
the easy thing to do.

Some projects have tried to simplify.

"Plain vanilla JavaScript.”

It can be done.

But it may not support your needs.

Do what is right.

We've come a long way!

JavaScript is a first class citizen.

We have the tools to prove it.

NoO excuses.

Good luck!

Questions?

Thanks!

I'm a Software
Architect,
Now What?

with Nate Shutta

Presentation
Patterns

with Neal Ford & Nate Schutta

Modeling for
Software
Architects

with Nate Shutta

Nathaniel T. Schutta

April 16 & 17,2018
From developer to software architect
Presented by Nathaniel Schutta

@ntschutta

