
Nathaniel T. Schutta
@ntschutta

Building	a	Frontend	Pipeline

Ah JavaScript!

It used to be so simple right?

1,500 line main.js.

Our apps aren’t like that
anymore though are they?

JavaScript is a first class citizen now.

Modern applications are many
thousands of lines of JavaScript.

We incorporate many
libraries and frameworks.

https://mobile.twitter.com/joeerl/status/930774515512201216

NPM all the things.

JavaScript itself is evolving.

Browsers are still an issue…

The struggle is real.

What do we do about it?

Why do we need a pipeline at all?

Not your older sister’s web apps.

No longer a few thousands
lines of JavaScript and jQuery.

Adhoc approach can’t keep up with
the complexity of modern JS apps.

Apply the level of discipline to the
frontend that we use on the backend.

Linters to ensure our code doesn’t
fall prey to common errors.

Unit tests to ensure our changes
didn’t break anything.

Bundlers to minimize asynchronous
requests to our servers.

Transpilers so we can leverage
ES6 in older browsers.

Task runers to help tie it all together.

JavaScript usage has exploded.

Number one language on GitHub?

Yep.

Not a new phenomena either.

We cannot afford to treat
JavaScript as a one off.

The same engineering discipline we
use on “server side” code must apply.

Of course for many of us, JavaScript
is our server side language too!

More than a few options.

Try and clear some of that up today.

Linters.

Certain mistakes can be
caught automatically.

Static code analysis.

Find bad patterns.

Check style adherence.

Essentially looking for
programer errors.

== instead of ===

That kind of thing.

Can (and should) wire linters into
your IDE or text editor of choice.

Better to catch the errors as you go
than wait for a build break.

As usual, multiple options.

Pluggable linter.

Many, many rules you can tweak…

Configuration is, wait for it, JSON. But
you can also use JavaScript or YAML.

eslint --init gives
you a .eslintrc file.

You get to decide the error level.

Off, warn or error.

The recommended rules are on by
default - any rule in the list with a ✔.

You can specify
environments and globals.

Various parser options.

Expects ES5 syntax but you can
configure other variants.

Also supports JSX syntax.

Using React? Leverage
ESLint-plugin-React.

https://github.com/yannickcr/eslint-plugin-react

Espree is the default parser but you
can swap that out if you wish.

ESLint supports 3rd
party plugins as well.

You can ask ESLint to
ignore a chunk of code.

/* eslint-disable */
/* eslint-enable */

Be very careful with that…

You can also disable a specific rule inline.

/* eslint-disable no-alert*/
/* eslint-enable no-alert*/

You could actually turn
on *all* the rules.

"extends": "eslint:all"

Please don’t do that!

The rules change with every
minor and major version.

Works with Atom, Emacs,
Sublime Text, TextMate, VIM, etc.

JetBrains, Eclipse, Visual
Studio and more.

Pre commit hooks, command line tools,
Mocha integration…

Rules for Angular, Jasmine, React…

Stock configurations for Airbnb,
Facebook, Google, Shopify, etc.

And you get an integration,
and you get an integration!!!

Curated list - Awesome ESLint.

https://github.com/dustinspecker/awesome-eslint

Installed via NPM.

MIT license.

Don’t like ESLint?

Use a linter! Catches common
mistakes and errors.

Which one should you use? Up to you!

Feels like there is more
energy behind ESLint.

More options than you probably
know what to do with too!

Spend some time thinking about
the configuration options.

There are a lot of options.

Which ones should you turn on?
Which ones should you relax?

https://twitter.com/KentBeck/status/596007846887628801

Is this an existing project?

Or greenfield?

Tempting to crank all the knobs up to 11.

Existing projects probably
have some cruft.

Don’t overwhelm the
team with warnings!

Easy to get discouraged.

“We have so many warnings…”

Fixing 10 or 20 hardly makes a dent.

Easy to miss when you
add another one…

Start small.

Expect some…discussion
around which rules to use.

Pick one or two.

Turn them on.

Should result in a
manageable set of warnings.

Fix them!

An iteration or two later,
add another rule or two.

Rinse, repeat.

“Ratchet up.”

Over time, you’ll have a
very complete set.

And a clean code base.

With a new code base, it
is easier to start big.

Start clean, stay clean.

Don’t be afraid to tweak!

The warnings are there
to help, not hurt.

Testing.

We need to test our code.

That isn’t controversial.

Right?!?

We can have a debate about unit vs.
integration tests vs. UI tests.

We need it all…up to you to
determine how much of each.

Think about it like a pyramid…

As you might suspect, there are
multiple testing tools at our disposal.

Another very popular
JavaScript testing tool.

Perhaps “meta” tool.

Can use different assert libraries.

Allows for BDD or
“assert” based testing.

Includes code coverage.

Highlights slow tests.

Detects globals.

Can run tests based on a
regular expression...

Various reporting mechanisms.

Dot matrix, spec, TAP,
landing strip, list, JSON...

Also includes JSON and
HTML coverage reports.

Interface system supports
various testing DSLs.

should, expect, chai…
whatever you prefer using.

Often used with Chai.

Just an assertion library.

Allows you to use BDD or TDD.

Supports asynchronous
testing out of the box.

Can set test and suite level timeouts.

Mocha looks for /test/*.js.

Works with sinon.js for
spies, stubs and mocks.

Headless testing via PhantomJS.

Basically, everything you expect out
of a modern testing library!

Don’t like Mocha?

Writing tests is more important than
the tool you use to write them.

Doesn’t matter which one you use!

But use something!

Bundlers.

At build time, generates a bundle file.

One unified JavaScript file.

Your code, libraries, frameworks, all
the dependencies - one file.

Saves the browser from downloading
dozens (or hundreds) of files.

Why do we use bundlers?

First, a bit of history.

Common for developers to
leverage modules.

Or packages, namespaces, etc.

Nothing new really - just a pattern.

In some languages, modules
are a first class concept.

In others it is very fuzzy.
Or lacking all together.

Just a way to encapsulate code.

Allows us to abstract functionality to
a library or framework.

Simplifies reuse.

ES5 and earlier has no
allowance for modules.

And that was fine - for a while.

But applications have grown.

Two common patterns in older
JavaScript code…

Immediately Invoked Function
Expression aka IIFE.

Wrap a function in parenthesis makes
it a function expression…

Which we can then immediately call.

Code is encapsulated.

Variables inside the function stay
within the function’s closure.

Doesn’t help us with dependency
management though.

IIFE wasn’t the only approach. Some
used the Revealing Module pattern.

Basically we assign a return value.

And we use that variable to
access the “module’s API”.

Basically gives us the same benefits
and drawbacks as IIFE.

Unsurprisingly, clever developers
yearned for more.

Started defining their own module
formats for JavaScript.

Asynchronous Module
Definition (AMD), CommonJS…

Universal Module Definition (UMD),
System.register…

And of course ES6 has a module format!

Module loaders execute at runtime.

Module loader looks at the module
format and downloads required files.

Which often results in downloading
dozens (or hundreds) of files.

“I only required calendar but
87 files were downloaded…”

RequireJS and SystemJS are popular.

Module bundler replaces
a module loader.

Generates a bundle of code at build
time. Browser fetches said bundle.

As you can guess, there are multiple
bundler options to choose from!

Module bundler - but
then you knew that.

Builds a dependency graph and pulls
everything into one (or more) bundle.

Highly configurable.

Four core concepts: Entry,
Output, Loaders and Plugins.

Entry - where to start the
dependency graph.

Based on said entry point, what other
modules do we depend on.

There can be multiple entry points.

Output - where do you want the
bundle and what do you want to call it.

Also referred to as emitted,
produced or discharged.

Loaders - extend webpack beyond
JavaScript to other file types.

Essentially turns any file into a
module that can be included.

A file that passes this test should
be transformed with this loader.

Plugins - extensions to webpack.

Minify, optimize, define variables, etc.

Simply require the plugin, configure
as necessary and away you go.

Multiple plugins built in, along with
several others you can leverage.

https://webpack.js.org/plugins/

webpack does perform
a bit of transpiling.

Gives us import and export support.

Again, bundling breaks the
edit/save/refresh lifecycle.

As you might expect, there are
options in the webpack universe!

We can use source maps to, well map
errors and warnings to the original file.

webpack includes a watch mode:
change a file, rebuild.

Just requires a browser refresh.

Violates the lazy developer ethos…

That which I do more than once
should be automated away!

webpack-dev-server
gives us live reloading!

Make a change and once it is done
building, it will be loaded!

webpack supports Hot Module
Replacement (HMR) as well.

Check out the development guide for
full setup information.

https://webpack.js.org/guides/development/

Installed via NPM or yarn.

MIT license.

Of course webpack is
not our only option!

No one could have predicted this.

Transpilers.

That term “transpile” has come up a
few times - what does it mean?

Not a great word frankly…

And not a new idea as such.

Just a fancy way of saying
“source-to-source” compiling.

Prevalent in the frontend space.
For better or worse.

We can blame GWT and CoffeeScript.

Take Java and make it JavaScript.

Make my ES6 code run
in older browsers.

TypeScript, ClojureScript.
The list goes on and on!

Anything you can do I can do better…

Allows us to use modern approaches
without worrying about browsers.

Remember how much fun the
Netscape/IE wars were?!?

Too soon?

Have things gotten any better?

Tomorrow’s JavaScript today?

Wouldn’t it be nice to use all the new
JavaScript hotness today?

Browser support isn’t, and probably
never will be, universal.

Babel gives us “syntax transformers”.

But it also supports
polyfill, JSX and Flow.

Plugins allows you to piece together
the transforms your project needs.

But how do I debug the transformed
code? It isn’t what I wrote!

Source maps for the win.

What does this look like?

Use the REPL!

 https://babeljs.io/repl/

But you’ll want to use the CLI.

Along with your favorite build tool.

You name it, it is most likely supported.

Configure via .babelrc
file. Imagine that.

If you are doing React you are
(probably) using Babel.

And the babel-preset-react.

Works with Atom, Sublime Text,
VIM, Visual Studio, WebStorm, etc.

Installed via NPM.

MIT license.

Other options are largely other
languages transforming to JavaScript.

Haste, Elm, Amber, ClojureScript,
TypeScript, Opa, Dart, etc.

Task runners.

Obviously, you could manage these
tools by hand. But you shouldn’t.

Automation: #winning.

Ensures that we’re doing the same
thing. Every. Single. Time.

Run tests, minify, linting, bundle…

Not a new idea…

Akin to make, Rake, Ant, Gradle, etc.

Fertile ground. A veritable plethora
of options in the build space.

Many people just use npm scripts.

Several supported “stages” plus the
ability to run arbitrary scripts.

npm run foo

You can cover a lot of ground using
nothing more than npm scripts.

And it is one less tool you have to
install, update, learn etc.

Bit more of an…artisanal approach.

Of course there are full fledged
task runner/build tools.

Came along well after Grunt.

Alternative approach to automation.

Code over configuration.

More Gradle like.

Large plugin ecosystem (though
ultimately smaller than Grunt’s).

“The streaming build system.”

Leverages Node streams.

Node streams can be…challenging
for developers to understand.

“Streams are Node’s best and
most misunderstood idea.”

https://medium.freecodecamp.org/node-js-streams-
everything-you-need-to-know-c9141306be93

Just a collection of data - and it
may not all fit into memory.

But data is only part of the picture.

Think composing Unix
commands via pipes.

Streams let us do the same thing.

Many Node modules implement the
streaming interface: HTTP, TCP, zlib.

Gulp takes advantage of streams -
leads to faster, more efficient builds.

But the learning curve can be steep.

At least for those lacking a
solid Node background.

Documentation isn’t stellar.

MIT license.

Don’t like any of those options?

No problem!

And you get a build tool and you get a
build tool and you get a build tool…

There are others though more than a
few appear abandoned…

Anyone publish one today?

Putting it all together.

We’ve touched on a number of tools!

Leads to a very natural question…

Which one should *I* use?

https://twitter.com/KentBeck/status/596007846887628801

Don’t like what I’ve shown you?

Great, use what works for your team!

Not sure what that is?

Perform a time boxed eval.

But use something!

Many of these tools are very new.

Expect some volatility.

Can’t treat JavaScript like
a toy language today.

You don’t need to adopt
every one of these today.

Pick your pain point.

Introduce one or two tools.

Ratchet up.

After a few weeks or
months, add another.

Rinse repeat.

Take the time to wire these into
your editor or IDE of choice.

Make the right thing to do,
the easy thing to do.

Some projects have tried to simplify.

“Plain vanilla JavaScript.”

It can be done.

But it may not support your needs.

Do what is right.

We’ve come a long way!

JavaScript is a first class citizen.

We have the tools to prove it.

No excuses.

Good luck!

Questions?

Nathaniel	T.	Schutta
@ntschutta

Thanks!
I’m a Software

Architect,
Now What?

with Nate Shutta

Modeling for
Software

Architects
with Nate Shutta

Presentation
Patterns

with Neal Ford & Nate Schutta

