
You Don't know
MobX State Tree



Hi 
!

I'm Max Gallo
Principal Engineer at DAZN

twitter: @_maxgallo (yes with an underscore)
more: maxgallo.io



The plan
» MobX intro

» MobX State Tree overview

» Designing a Reactive Project

» Best Practises



If MobX is the Engine
MobX State Tree is the Car



MobX
The engine of the car
» Decouples View from Business Logic

» Uses Reactive paradigms

» Unopinionated



MobX Pillars
Observable state
Mutable Application State

Computed Values
Automatically derived values

@Observer
Subscribing to observables

Reactions
Side effects like updating a React component



MobX
Observable state
Mutable Application State

Computed Values
Automatically derived values

@Observer
Subscribing to observables

Reactions
Side effects like updating a 
React component



MobX State Tree
» Opinionated / Ready to use

» Powered by MobX

» Relies on the concept of Trees (Stores)



What's a Tree ?
also known as Store

Model

» Mutable observable state

» Contains type information

» Could contain other trees

Views
MobX computed values

Actions
The only way to update the 
model



MobX State Tree

How to connect 
Stores with React 
components ?





MobX State Tree Stores

Deep Dive 
!

» Mutable and Immutable (Snapshots, Time Travelling)

» Composition

» Lifecycle Methods

» Dependency Injection



MobX State Tree Stores

Dependency
Injection
» Inject anything

» Environment is shared per 
tree

» Useful for testing



Designing 
!

Stores
1. Shape your Trees
One Root Store vs Multiple Root Stores

2. Stores Communication
How Stores communicate between each other



Shape your trees

One Root Store
Pros

» Easier to perform actions 
on everything at once 
(snapshot, creation, 
destroy).

» Unique environment for 
dependency injection.

Cons
Very easy to create tightly 
coupled stores



Shape your trees

Multiple Root 
Stores
Pros
Easier to reason by Domain

Cons

» Less immediate to perform 
actions on everything

» Not single environment for 
dependency injection



Real World

Stores communication 
!

1.Default Approach

2.Actions Wrapper

3.Dependency Injection



Stores Communication

Default Approach
Each Store access directly 
other Stores.

» Easier when using a Single 
Root Store

» Each Store could end up 
knowing the whole structure 

⚠



Stores Communication

Actions Wrapper
One Store,
to rule them all 

!"#

» Calls directly other Stores

» Knows a lot about your App



Stores Communication

Dependency Injection

Injecting one or multiple 
stores into another one.

» You could use it for both 
Actions and Views

» Carefull about circular 
dependencies



One more thing ...



Store
Composition
Two or more stores can be 
composed

» Separation of Concerns

» Reusability



Composition

Real World Example



Composition

Real World 
Example
Data Store
Holds the data to render

Inertial/Arrow Scrolling
Manages scrolling

Element Pooling Store
Renders only in view



Mindset 
!

Derive everything
When you add a new property in the Model,
ask yourself: Can I derive it somehow ?

“Anything that can be derived from the application 
state, should be derived. Automatically”



Takeaways
» MobX helps you decoupling your code

» MobX State Tree provides a structure 

» Shape your tree & setup the communication

» Embrace Composition!

» Embrace Reactivity!



Thanks
!
 github.com/maxgallo/you-dont-know-mobx-state-tree
✉

 hello@maxgallo.io
twitter @_maxgallo


