
Stencil: The Time for Vanilla 
Web Components has Arrived

Gil Fink

sparXys CEO

@gilfink / www.gilfink.net



Typical Application Web Page Design



From Design to Implementation

Session List

Day tabs

Agenda

Agenda filters

Component

Child component

Child component

Child component

<session-list />

<tabs />

<agenda />

<agenda-filters />



How would you build that page?



Do we really need all these 
frameworks/libraries?



What if we could teach the 
browser new elements?



Each Element Instance

• Will be a DOM element

• Creates its own DOM tree

• Can be accessed and manipulated using DOM functions or its own 
API

• Is a JavaScript object

• Is this possible?



This is where our journey begins



About Me

• sparXys CEO and senior consultant

• Microsoft MVP in the last 9 years 

• Pro Single Page Application Development (Apress) co-author

• 4 Microsoft Official Courses (MOCs) co-author

• GDG Rishon and AngularUP co-organizer



Agenda

• The Problems We Faced

• Web Components APIs 

• Stencil



Undescriptive Markup

Markup Example



Poor Separation of Concerns

You want HTML, CSS and
JavaScript to work together

You end up with a mess

The wiring gets in your way!



Bundling is Hard

• You want to bundle a complex component

The component includes HTML, CSS and JavaScript

how would you do that?
• Use a server side mechanism?

• Bundler? (Webpack/Browserify)



Web Components Standard to The Rescue

• Natively-supported, standardized JavaScript components

• Some general goals:

Code Reuse Encapsulation
Separation of 

Concerns
Composition Theming Expressive Semantic



The Web Components Standard

• Reusable DOM fragmentsTemplates

• Load HTML declarativelyImports

• DOM encapsulationShadow DOM

• Create your own elements
Custom 

Elements



Custom Elements

• Enable to extend or create custom HTML elements

• Defined using the customElements.define function:

or extend an existing element:

var myInput = window.customElements.define(‘my-input’, 
class x extends HTMLElement {…});

var myInput = window.customElements.define(‘my-input’, 
class y extends HTMLInputElement {...});



Custom Elements – Usage

• Use the element in your DOM:

or use the createElement function:

<my-input></my-input>

var elm = document.createElement(‘my-input’);



Custom Element Life Cycle Events

• connectedCallback

• disconnectedCallback

• attributeChangedCallback

class MyInput extends HTMLElement {
constructor() {

super(); 
// your initialization code goes here

}
connectedCallback() {…}
disconnectedCallback() {…}
attributeChangedCallback() {…}

}



Demo
Custom Elements



A Problem with Web Development Today

• Catholic wedding with frameworks/libraries

• Infrastructure is based on a 
framework/library

• Infrastructure isn’t reusable if other company
projects use another framework/library



Problem with Web Development Today –
Cont.

• Custom Elements can remove the barrier of framework/library 
coupling

• Can be used by any framework/library

• Encapsulate their functionality and style

• Suitable for component infrastructure development



But there are problems with 
custom elements



Problems with Custom Elements

• We are used to runtime framework/library goodies such as:
• Virtual DOM

• Data binding

• Performance

• Server side rendering

• And etc.



Problems with Custom Elements – Cont.

• Verbose syntax
• Too much boilerplate 

• We need to craft everything by ourselves



Problems with Custom Elements – Cont.

• Still W3C working draft

• Need Polyfills in some browsers



Is there a better way?



What if I told you that you can 
solve all the previous problems?





What is Stencil?

• A compiler that generates Custom Elements

• Not a framework/library
• Output is 100% standards-compliant web components

• Adds powerful framework features to Web Components
• Virtual DOM
• Reactivity
• JSX
• TypeScript
• And etc.

• Created and used by Ionic Framework

http://ionicframework.com/


Stencil Component Example

import { Component, Prop } from '@stencil/core';
@Component({

tag: 'my-name',
styleUrl: 'my-name.scss'

})
export class MyName {

@Prop() name: string;

render() {
return (

<p>
Hello, my name is {this.name}

</p>
);

}
}



From Stencil to Custom Elements

import { Component, Prop } from 
'@stencil/core';

@Component({

…

})

export class CollapsiblePanel {

…

}

Stencil Code JavaScript Code
Stencil 
Compiler

var CollapsiblePanel = (function () 
{

function CollapsiblePanel() {
}

… // implementation

return CollapsiblePanel;
}());

Stencil 
Compiler





Getting Started with Stencil

git clone https://github.com/ionic-team/stencil-component-starter.git my-component
cd my-component
git remote rm origin

npm install
npm start



Demo
Hello Stencil



Stencil Generated Component Advantages

• Virtual DOM 
• fast DOM updates without common DOM performance pitfalls

• Lazy Loading
• By default components load asynchronously and can be bundled with related 

components

• Reactivity
• Efficient updates based on property and state changes

• High-performance Rendering 
• async rendering system, similar to React Fiber



Stencil API

• Based on JavaScript decorators

• Written with TypeScript

• You can use the following decorators:
• @Component()

• @Prop()

• @State()

• @Event()

• @Listen()

• @Element()

• @Method()



@Component Decorator

• The main Stencil decorator

• Configures the entire component including
• Tag

• Style

• Shadow DOM

• Host

• Assets

import { Component } from '@stencil/core';
@Component({

tag: 'st-comp',
styleUrl: 'comp.scss',
shadow: true

})
export class Comp {

...
}



@Prop and @State Decorators

• The Prop decorator is used to indicate that a member is exposed as 
component attribute

• The State decorator is used to indicate that a member is part of the 
component state

• Reactivity

import {Component, Prop, State} from '@stencil/core';
@Component({

tag: 'collapsible-panel',
styleUrl: 'collapsible-panel.css'

})
export class CollapsiblePanel {

@Prop() title: string;
@State() collapsed: boolean;
...

}



@Method Decorator

• The Method decorator is used to expose component API

import { Component, Element, Method } from '@stencil/core';
@Component({

...
})
export class Toaster {

@Element() toasterDiv: HTMLElement;

@Method()
showToast() {

this.toasterDiv.style.display = 'block';
};

}



Demo
Creating a Stencil Component



Deploying a Stencil Component

• Update the stencil.config.js file, if needed
• stencil.config.js in Stencil starter already has these things configured

exports.config = {
namespace: 'myname',
generateDistribution: true,
generateWWW: false,
...

};



Deploying a Stencil Component – Cont.

• Update the package.json file, if needed

{
"main": "dist/collection/index.js",
"types": "dist/collection/index.d.ts",
"collection": "dist/collection/collection-manifest.json",
"files": [

"dist/"
],
"browser": "dist/myname.js",
...

}



How Stencil Solves the Frameworks Problem?

• Stencil works primarily in build time

• Any framework/library (such as React or Angular) can consume the 
generated component
• As a script tag

• As a node module

• Using the stencil-starter-app

• Stencil is suitable for infrastructure components



Demo
Consuming a Stencil component from Angular



A Word About Micro Frontends

Shared Components and Behaviors
Generate

Micro-app 1 Micro-app 2 Micro-app 3



Summary

• Web Component standard is very powerful
• But… still in development

• Stencil compiler can ease the pain of creating custom elements
• Includes a lot of advantages such as JSX, TypeScript and more

• Generates standard-compliant web components



Resources

• Stencil website: https://stenciljs.com/

• Custom Elements: https://developer.mozilla.org/en-
US/docs/Web/Web_Components/Custom_Elements

• My Website – http://www.gilfink.net

• Follow me on Twitter – @gilfink



#UseThePlatform



Thank You!


